Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic

نویسندگان

  • Fumiyuki Momose
  • Jinhui Chao
چکیده

In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legendre forms, at least half of them are weak. We also give an algorithm to determine if an elliptic curve belongs to one of two classes of weak curves. keywords Elliptic curves, Hyperelliptic curves, Non-hyperelliptic curves, Index calculus, GHS attack, Cover attack

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics

In this paper, we present a classification of classes of elliptic curves defined over cubic extension of finite fields with odd characteristics, which have coverings over the finite fields therefore can be attacked by the GHS attack. We then show the density of these weak curves with hyperelliptic and non-hyperelliptic coverings respectively. In particular, we shown for elliptic curves defined ...

متن کامل

Higher Heegner points on elliptic curves over function fields

Let E be a modular elliptic curve defined over a rational function field k of odd characteristic. We construct a sequence of Heegner points on E, defined over a Zp -tower of finite extensions of k, and show that these Heegner points generate a group of infinite rank. This is a function field analogue of a result of C. Cornut and V. Vatsal.

متن کامل

On Security of Superelliptic Curves Based Cryptosystems against GHS Weil Descent Attacks

The GHS Weil descent attack by Gaudry, Hess and Smart was originally proposed to elliptic curves over finite fields of characteristic two [11]. Among a number of extensions of this attack, Diem treated the cases of hyperelliptic curves over finite fields of arbitrary odd characteristics [4]. His results were partially extended to algebraic curves of which the function fields are cyclic Galois e...

متن کامل

Weil descent attack for Kummer extensions

In this paper, we show how the Weil descent attack of Gaudry, Hess and Smart can be adapted to work for some hyperelliptic curves defined over fields of odd characteristic. This attack applies to a family of hyperelliptic and superelliptic curves over quadratic field extensions, as well as two families of hyperelliptic curves defined over cubic extensions. We also show that those are the only f...

متن کامل

09 v 1 9 O ct 1 99 6 Hilbert - Kunz Functions of Cubic Curves and Surfaces

We determine the Hilbert-Kunz function of plane elliptic curves in odd characteristic, as well as over arbitrary fields the generalized Hilbert-Kunz functions of nodal cubic curves. Together with results of K. Pardue and P. Monsky, this completes the list of HilbertKunz functions of plane cubics. Combining these results with the calculation of the (generalized) Hilbert-Kunz function of Cayley’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013